

Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

Magnetic properties and structural transitions of orthorhombic fluorite-related compounds Ln_3MO_7 (Ln=rare earths, M=transition metals)

Makoto Wakeshima, Yukio Hinatsu*

Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan

ARTICLE INFO

Article history: Received 9 July 2010 Received in revised form 24 August 2010 Accepted 1 September 2010 Available online 15 September 2010

Keywords: Magnetic properties Structural transition Rare earth Magnetic susceptibility Specific heat Molybdenum Defect-fluorite structure

ABSTRACT

Magnetic properties and structural transitions of ternary rare-earth transition-metal oxides Ln_3MO_7 (Ln=rare earths, M=transition metals) were investigated. In this study, we prepared a series of molybdates Ln_3MO_7 (Ln=La-Gd). They crystallize in an orthorhombic superstructure of cubic fluorite with space group $P2_12_12_1$, in which Ln^{3+} ions occupy two different crystallographic sites (the 8-coordinated and 7-coordinated sites). All of these compounds show a phase transition from the space group $P2_12_12_1$ to Pnma in the temperature range between 370 and 710 K. Their magnetic properties were characterized by magnetic susceptibility measurements from 1.8 to 400 K and specific heat measurements from 0.4 to 400 K. Gd₃MO₇ shows an antiferromagnetic transition at 1.9 K. Measurements of the specific heat for Sm₃MO₇ and the analysis of the magnetic specific heat indicate a "two-step" antiferromagnetic transition due to the ordering of Sm magnetic ordering of the 7-coordinated Sm ions occur at 2.5 K, and then the 8-coordinated Sm ions order at 0.8 K. The results of Ln_3MO_7 were compared with the magnetic properties and structural transitions of Ln_3MO_7 (M=Nb, Ru, Sb, Ta, Re, Os, or Ir).

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Ternary metal oxides of general formula Ln₃MO₇ (Ln is a rare earth element; M is a pentavalent transition element such as Nb, Mo, Ru, Sb, Ta, Re, Os, or Ir) have been intensively studied. They have an ordered, defect-fluorite structure. The relationship to the fluorite structure is as follows. The fluorite unit cell for oxides has the composition $M_4^{4+}O_8$. If the four tetravalent metal ions are replaced by three trivalent ions (Ln) and one pentavalent ion (M), one oxide vacancy is formed per fluorite cell. Due to significant differences in radii between the Ln^{3+} and M^{5+} ions, cation ordering occurs on the metal sites and the oxide-vacancy orders on the anion sites. In 1979, Rossell first determined the crystal structure of an orthorhombic La₃NbO₇ [1]. The M^{5+} ion is coordinated with six oxygen ions, forming a MO₆ octahedron. These octahedra share corners forming one-dimensional chains which are oriented along the *c*-axis. A variety of the space groups such as Pnma, Cmcm, P2₁2₁2₁, C222₁, and P2₁nb has been proposed for the Ln₃MO₇. Due to this unique crystal structures and possible related magnetic properties, many studies have been performed [2-41], especially for the magnetic properties of compounds containing Ru^{5+} ion at the *M*-site because of its

E-mail address: hinatsu@sci.hokudai.ac.jp (Y. Hinatsu).

largest possible spin (S=3/2) [5–13]. However, there was scant evidence for the expected one-dimensionality in the magnetic susceptibility.

Another topic for Ln_3MO_7 is that detailed magnetic and thermal investigations on the ruthenium-, iridium- and osmium-containing members of the Ln_3MO_7 family show low-temperature structural phase transitions [9–11,13,14,19,26,30,31,35–38,40,41]. However, the low temperature structures are, in most cases, not known, or different structures were presented for the same compounds.

We have paid our attention on the M=Mo compounds. Prevost-Czeskleba first reported that Ln_3MoO_7 (Ln=La, Pr, Nd, Sm, Eu) crystallized in an orthorhombic phase with space group *Cmcm* from their powder X-ray diffraction measurements [27]. Later, Greedan and Gougeon prepared single crystals of Ln₃MoO₇ (Ln=La, Pr) and performed their X-ray diffraction measurements [28,29]. These compounds crystallize in the orthorhombic space group $P2_12_12_1$. They studied the electronic and thermal properties of La₃MoO₇ by magnetic susceptibility, electric resistivity, and neutron diffraction measurements as a function of temperature. The magnetic susceptibility was quite complex. The main feature was a broad maximum at 655 K which was interpreted as due to intra-chain spin corrections of the Mo⁵⁺ ions. Several other anomalies were observed at 483, 140, and 100 K. Then, we prepared a series of LnMoO₇ compounds (*Ln*=La, Pr, Nd, Sm, and Eu) and reported their crystal structures and magnetic properties [30]. The structures at room temperature were analyzed with the space group $P2_12_12_1$. The differential scanning calorimetry (DSC) measurements indicated

^{*} Corresponding author. Fax: +81 11 706 2702.

^{0022-4596/\$ -} see front matter \circledcirc 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2010.09.005

that the phase-transition occurs for any Ln_3MO_7 compound in the temperature range between 370 and 710 K. However, we could not determine the crystal structure above the phase-transition temperature. Very recently, Gougeon et al. determined the crystal structures of Ce₃MoO₇ and Sm₃MoO₇ by using their single crystals [33,39].

In this study, we extended the preparation of Ln_3MoO_7 compounds from Ln=La to Gd. Through high-temperature X-ray diffraction measurements, their crystal structures above the phase-transition were determined. In order to elucidate magnetic properties of these Ln_3MoO_7 compounds, the magnetic susceptibility measurements from 1.8 to 400 K and the specific heat measurements from 0.4 to 400 K were performed. The results of the magnetic properties and structural transitions for Ln_3MoO_7 were compared with those for Ln_3MO_7 (M=Nb, Ru, Sb, Ta, Re, Os, or Ir).

2. Experimental

2.1. Sample preparation

As starting materials, rare earth oxides Ln_2O_3 (Ln = La, Nd, Sm–Gd), MoO_2 , and MoO_3 were used. For the preparation of Ln = Pr compound, Pr_6O_{11} was used as the starting material. To obtain sesquioxide Pr_2O_3 , the Pr_6O_{11} was reduced in a flowing H_2 atmosphere at 900 °C for a day. For La₂O₃ and Nd₂O₃, they absorb moisture in air and easily form rare earth hydroxides Ln(OH)₃. Therefore, they were dried at 1173 K for 24 h before use. These starting materials were weighed in an appropriate metal ratio and were ground in an agate mortar. The mixtures were pressed into pellets and then sealed in an evacuated platinum tube. They were heated at 1200 °C for 12 h, and then cooled down to room temperature. After regrinding and repelleting, the same heating procedure was repeated again. For the preparation of Ln=Gd compound, the pelletized starting materials were sealed in a platinum tube, and were heated at 1350 °C for $3 h \times 2$. In the first stage of sample preparations, very small amounts of impurities remained in the desired compound because of the evaporation of Mo oxides; they were unreacted starting materials Gd₂O₃. In order to remove these impurities, the sample was washed with diluted hydrochloric acid. After this treatment, a single-phase Gd₃MoO₇ compound could be obtained.

2.2. X-ray diffraction analysis

Powder X-ray diffraction profiles were measured using a Rigaku Multi-Flex diffractometer with CuK α radiation (λ =1.5406 Å) equipped with a curved graphite monochromator. The data were collected by step-scanning in the angle range of 10° $\leq 2\theta \leq$ 120° at a 2 θ step-size of 0.02°. The X-ray diffraction data were analyzed by the Rietveld technique, using the programs RIETAN2000 [42].

2.3. Magnetic susceptibility measurements

The temperature-dependence of the magnetic susceptibility was measured in an applied field of 0.1 T over the temperature range of $1.8 \text{ K} \le T \le 400 \text{ K}$, using a SQUID magnetometer (Quantum Design, MPMS5S). The susceptibility measurements were performed under both zero-field-cooled (ZFC) and field-cooled (FC) conditions. The former was measured upon heating the sample to 400 K under the applied magnetic field of 0.1 T after zero-field cooling to 1.8 K. The latter was measured upon cooling the sample from 400 to 1.8 K at 0.1 T.

2.4. Specific heat measurements

Specific heat measurements were performed using a relaxation technique by a commercial heat capacity measuring system (Quantum Design, PPMS) in the temperature range of 0.4–400 K. The sintered sample in the form of a pellet was mounted on a thin alumina plate with Apiezon for better thermal contact.

2.5. Differential scanning calorimetry measurements

The DSC measurements were carried out under flowing Ar gas atmosphere over the temperature range 300–800 K using DSC 200 (Seiko, Japan). The heating rate was 5 K/min.

3. Results and discussion

3.1. Preparation and crystal structure

In this study, we could obtain a new compound Gd_3MoO_7 as a single phase. Fig. 1 shows the powder X-ray diffraction profile for Gd_3MoO_7 measured at room temperature. The diffraction pattern is quite similar to those for Ln=La-Eu compounds. Their crystal

Fig. 1. Powder X-ray diffraction profiles for Gd₃MoO₇. The calculated and observed profiles are shown on the top solid line and cross markers, respectively. The vertical marks in the middle show positions calculated for Bragg reflections. The lower trace is a plot of the difference between calculated and observed intensities.

Table 1Lattice and positional parameters for Gd3MoO7.

	Site	x	у	Ζ	$B(Å^2)$			
Space group: P212121, a=7.4459(1) Å, b=7.4840(1) Å, c=10.5620(2) Å								
$R_{\rm I} = 2.26$	%, $R_{wp} = 9$	9.91%						
Gd(1)	4a	0.9801(2)	0.0100(5)	0.7573(6)	0.45(2)			
Gd(2)	4a	0.7145(1)	0.7536(8)	0.5334(2)	0.45			
Gd(3)	4a	0.6970(5)	0.7479(8)	0.9843(2)	0.45			
Mo	4a	0.4955(5)	0.0020(8)	0.7518(8)	0.10(4)			
0(1)	4a	0.574(2)	0.742(4)	0.763(2)	0.50(30)			
0(2)	4a	0.782(3)	0.969(4)	0.143(2)	0.50			
0(3)	4a	0.128(3)	0.048(4)	0.109(2)	0.50			
0(4)	4a	0.832(3)	0.962(4)	0.388(2)	0.50			
0(5)	4a	0.216(3)	0.034(4)	0.368(2)	0.50			
O(6)	4a	0.960(3)	0.740(6)	0.879(3)	0.50			
O(7)	4a	0.011(3)	0.771(5)	0.606(3)	0.50			

Note: $R_{wp} = \left[\sum w(|F(o)| - |F(c)|)^2 / \sum w|F(o)|^2\right]^{1/2}$ and $R_I = \sum |I_k(o) - I_k(c)| / \sum I_k(o)$.

structures have been elucidated and they are orthorhombic with space group $P_{2_12_12_1}$ [28–30,33]. We have performed refinement of the crystal structure with the same space group. The results of the Rietveld analysis show that Gd₃MoO₇ is isomorphous with Ln_3MoO_7 (Ln=La=Eu). Table 1 lists the crystallographic data for Gd₃MoO₇, and Fig. 2 (a) shows its crystal structure. The structural feature of Gd₃MoO₇ is the occurrence of infinite single chains of tilted corner-linked MoO₆ octahedra running parallel to the b-axis. These MoO₆ chains alternate with rows of edge-shared Gd(1)O₈ pseudo-cubes to form slabs parallel to the *ab*-plane. The slabs are separated by the Gd(2) and Gd(3) cations, which are seven-coordinated by O atoms forming highly distorted pentagonal bipyramids. Gall and Gougeon found that the average value of Mo–O distances within the MoO₆ octahedra decreases from 1.981 to 1.966 Å when the Ln^{3+} ionic radius decreases from La to Sm [39]. The average Mo–O distance determined for Gd₃MoO₇ is 1.953 Å, which follows the above-mentioned relationship. They also pointed out that a slight decrease in the Mo–O(5)–Mo angle was observed when the Ln^{3+} ionic radius decreases, and it changes from 149.1° (Ln=La) to 146.6° (Ln=Sm). The value of Gd₃MoO₇ is 146.2°, which also follows the above-mentioned relationship. The MoO₆ octahedra and Gd(1)O₈ cubes in this $P2_12_12_1$ structure are obviously not

Fig. 2. Crystal structures of Ln₃MoO₇: (a) structure at room temperature (space group: P2₁2₁2₁) and (b) structure of La₃MoO₇ at 460 K (space group: Pnma).

so much regular. The Mo–O distances change from 1.81(2) to 2.04(3) Å. The Gd(1) cation has seven oxygen atoms as its nearest neighbors at distances ranging between 2.29(3) and 2.71(2) Å and an eighth at 3.34(2) Å (Gd(1)–O(3)) which form a highly distorted cube. This distortion results from the rotation of the MoO_6 octahedra around the *b*-axis.

The results of the X-ray diffraction measurements show that any of the Ln_3MoO_7 compounds crystallizes in the orthorhombic space group $P2_12_12_1$ at room temperature. The DSC measurements indicate that the phase transition occurs for all Ln_3MoO_7 (Ln=La-Sm) compounds in the temperature range between 370 and 710 K and that the phase-transition temperature increases from La₃MoO₇ to Sm₃MoO₇. We performed high-temperature XRD measurements for La₃MoO₇ in the temperature range between 300 and 500 K. Fig. 3(a) shows the XRD profiles measured at 300 and 460 K, and Fig. 3(b) depicts its low 2 θ region. When the temperature was increased above 370 K, some

Fig. 3. (a) Powder X-ray diffraction profiles of La₃MoO₇ at 300 and 460 K and (b) the profiles in the low 2θ range ($15^{\circ} \le 2\theta \le 40^{\circ}$).

weak diffraction lines (for example, the peaks at $2\theta \sim 20^{\circ}$ and 39° corresponding to the 102 (012) and 302 reflections, respectively) disappeared and the XRD profile was successfully refined with the space group Pnma. This space group is a supergroup of $P2_12_12_1$, and has been applied also for Ln_3NbO_7 (Ln=La, Pr, Nd) [2,38]. Table 2 lists the structural parameters for La₃MoO₇. The high-temperature structure of La₃MoO₇ is illustrated in Fig. 2(b). Two kinds of infinite chains are formed by corner-sharing MoO₆ octahedra and edge-sharing $La(1)O_8$ cubes, and the slabs consist of alternate chains, and 7-coordinated La(2) ions exist between the slabs. The MoO_6 octahedra and $La(1)O_8$ cubes in the *Pnma* structure are obviously much more regular than those in the $P2_12_12_1$ structure. In the former, the tilting of the MoO₆ chain is along the 001 direction with the tilting angle (Mo-O-Mo) of 152.6°, and in the latter, it is along the 100 direction with the tilting angles of 149.1° for La₃MoO₇ and 146.2° for Gd₃MoO₇.

Table 3 lists the room-temperature crystal structures for Ln_3MoO_7 and other Ln_3MO_7 compounds (M=Nb, Ta, Sb, Re, Os, Ir, Ru). Structural studies on Ln_3TaO_7 compounds show that with decreasing the size of Ln^{3+} ion, the space group of the Ln_3TaO_7 compounds changes from Cmcm to $C222_1$ to Fm-3m [24]. For Ln=Nd and Ho compounds, two-phases coexist at room temperature. With increasing temperature, they changed to a single-phase compound with the space group Cmcm (for Ln=Nd) and $C2_12_12_1$ (for Ln=Ho). Similar change of the structure with increasing temperature and with decreasing the size of Ln^{3+} ions has been observed for diamagnetic M ions, i.e., M^{5+} =Nb⁵⁺, Sb⁵⁺ [38,40].

Fig. 4 shows the variation of the structural phase transition temperatures of Ln_3MOO_7 against the ionic radius of Ln^{3+} in eight-coordination. The data for a series of Ln_3MO_7 (M=Re, Os, Ir, Ru) compounds are also shown in the same figure. These M^{5+} ions have a *d*-electron configuration ranging from d^1 to d^4 , indicating that the Ln_3MO_7 compounds are magnetically active. For each of the five series of Ln_3MO_7 compounds, the structure transition temperatures decrease with increasing the ionic radius of Ln^{3+} , i.e., it is clear that the structure transition of Ln_3MO_7 is clearly influenced by the size

Table 2Lattice and positional parameters for La3MoO7.

	Site	x	у	Ζ	$B(Å^2)$			
300 K								
Space group: $P2_12_12_1$, $a=7.6043(3)$ Å, $b=7.7225(4)$ Å, $c=11.1090(7)$ Å								
$R_{\rm I} = 1.83\%, R_{\rm wp} = 9.18\%$,			
La(1)	4a	0.9801(2)	0.0078(5)	0.7555(6)	0.34(2)			
La(2)	4a	0.6935(1)	0.7522(8)	0.5352(2)	0.34			
La(3)	4a	0.6923(5)	0.7487(8)	0.9795(2)	0.34			
Мо	4a	0.4960(5)	0.0018(8)	0.7496(8)	0.19(4)			
O(1)	4a	0.571(2)	0.746(4)	0.760(2)	0.21(15)			
O(2)	4a	0.799(3)	0.962(4)	0.132(2)	0.21			
O(3)	4a	0.139(3)	0.049(4)	0.114(2)	0.21			
O(4)	4a	0.825(3)	0.952(4)	0.382(2)	0.21			
O(5)	4a	0.197(3)	0.048(4)	0.375(2)	0.21			
O(6)	4a	0.970(3)	0.765(6)	0.885(3)	0.21			
O(7)	4a	0.984(3)	0.770(5)	0.624(3)	0.21			
460 K								
Space group: $Pnma a = 7$	7273($(2) \stackrel{a}{\land} h = 111$	406(3) Å c-	7 5881(2) Å				
Space group. Finnu $u = 7.7275(2)$ A, $v = 11.1400(5)$ A, $v = 7.3881(2)$ A $R_1 = 2.31\%$, $R_{wn} = 12.06\%$								
La(1)	4 <i>c</i>	0.0030(9)	1/4	0.7590(6)	0.76(3)			
La(2)	8d	0.2498(7)	0.4720(1)	0.4422(2)	0.76			
Мо	4 <i>c</i>	0.9965(13)	1/4	0.2486(9)	0.24(6)			
O(1)	8d	0.974(4)	0.370(3)	0.433(4)	0.72(20)			
O(2)	8d	0.945(4)	0.880(3)	0.922(4)	0.72			
O(3)	8d	0.232(4)	0.384(1)	0.724(2)	0.72			
O(4)	4 <i>c</i>	0.263(7)	1/4	0.312(2)	0.72			
5 c c c c c c c c c c c c c c c c c c c								

Note: $R_{wp} = \left[\sum w (|F(o)| - |F(c)|)^2 / \sum w |F(o)|^2\right]^{1/2}$ and $R_I = \sum |I_k(o) - I_k(c)| / \sum I_k(o)$.

Table 3

Ln	Ln ₃ MoO ₇	Ln ₃ NbO ₇	Ln_3 TaO ₇	Ln_3SbO_7	Ln ₃ ReO ₇	Ln_3OsO_7	Ln_3 IrO ₇	Ln ₃ RuO ₇
La	$P2_{1}2_{1}2_{1}$	Pnma	Cmcm	Cmcm		Стст		Cmcm
Pr					Cmcm		Cmcm	
Nd		L.	C2221	C2221				
Sm		C222 ₁						
Eu							Ļ	Ļ
Gd	Ļ					Ļ		$P2_1nb$
Tb		Ļ			C2221			
Dy		Fm-3m						Ļ
Но			<i>Fm-3m</i>					
Er								
Tm					Ļ			
Yb								
Lu		Ļ	Ļ	Ļ				

Crystal structures of *Ln*₃MO₇ at room temperature.

Note: A symbol > denotes that two phases coexist.

Fig. 4. Structural phase transition temperatures of Ln_3MO_7 (M=Mo, Ru, Re, Os, Ir) against the ionic radius of Ln^{3+} in eight-coordination.

of the Ln^{3+} cation. As the transition temperature increases with decreasing the ionic radius of Ln^{3+} , the transition is stress-induced and occurs with lattice contraction on cooling. Each transition

Fig. 5. Temperature dependence of magnetic susceptibility for Gd_3MoO_7 at low temperatures. The inset shows the reciprocal susceptibility vs. temperature curve. The solid line is the Curie–Weiss fitting.

temperature within a series is separated by approximately the same temperature interval except for the case of Ln_3MOO_7 . The trend of the transition temperature against Ln^{3+} radius for Ln_3MOO_7 is different from those for Ln_3MO_7 (M=Ru, Re, Os, Ir). The reason for this may be related to the difference in their hightemperature structures, that is, the Ln_3MO_7 (M=Ru, Re, Os, Ir) exists in structure, whereas the other Ln_3MO_7 (M=Ru, Re, Os, Ir) exists in the *Cmcm* structure.

Table 4 Magnetic data for LnoMoOr

	Magnetic properties	$\mu_{\mathrm{eff}}\left(\mu_{\mathrm{B}} ight)$	θ (K)	Ref.				
$\begin{array}{c} La_3MoO_7\\ Ce_3MoO_7\\ Pr_3MoO_7\\ Nd_3MoO_7\\ Sm_3MoO_7\\ Eu_3MoO_7\\ Gd_3MoO_7\\ \end{array}$	Magnetic anomaly at 150, 380 K Paramagnetic Magnetic anomaly at 8.0 K Antiferromagnetic, T_N =2.5 K Magnetic anomaly at 0.8, 2.5 K Paramagnetic Antiferromagnetic, T_N =1.9 K	2.49 6.42 6.46 a 14.06(2)	- 155 - 79(1) - 57.4(8) a - 7.4(1)	[28,30] [39] [30] [30] this study [30] this study				

^a Sm³⁺ and Eu³⁺ ions show the van Vleck paramagnetism.

Fig. 6. (a) Temperature dependence of the specific heat divided by temperature (C_p/T) for Gd₃MoO₇ and (b) temperature dependences of the magnetic specific heat divided by temperature (C_{mag}/T) and the magnetic entropy change (S_{mag}) for Gd₃MoO₇.

Fig. 7. Temperature dependence of the magnetic susceptibility for $\rm Sm_3 MoO_7$ below 15 K.

3.2. Magnetic properties

3.2.1. General magnetic properties of Ln₃MoO₇

In the preceding paper, we briefly reported magnetic properties of Ln_3MoO_7 compounds [30]. In this study, we performed measurements of magnetic susceptibilities and specific heat for Gd₃MoO₇ and re-measured magnetic susceptibilities and specific heat of Sm₃MoO₇. Table 4 summarizes their results with the data reported by Greedan et al. [28] and Gall and Gougeon [39]. The La₃MoO₇ shows complex magnetic behavior at 150 and 380 K. Below these temperatures, there is a large difference in the temperature-dependence of the magnetic susceptibility measured under zero-field-cooled condition and under field-cooled condition [28,30]. The magnitude of the susceptibility of La_3MoO_7 is much smaller than that expected by about a factor of 10^{-2} for a simple S=1/2 paramagnet, and there is no Curie–Weiss regime in the experimental temperature range. Therefore, magnetic properties of Ln_3MoO_7 are mainly due to the magnetic behavior of Ln^{3+} ions in the compounds. The Nd₃MoO₇ and Gd₃MoO₇ show a clear antiferromagnetic transition at 2.5 and 1.9 K, respectively. From the susceptibility measurements, both Pr₃MoO₇ and Sm₃MoO₇ show the existence of magnetic anomaly at 8.0 and 2.5 K, respectively. Other compounds (*Ln*=Ce, Eu) are paramagnetic down to 1.8 K [30,39]. The effective magnetic moments and the Weiss constants were determined in the Curie-Weiss law temperature region. For Sm₃MoO₇ and Eu₃MoO₇, the susceptibility does not obey the Curie-Weiss law because Sm³⁺ and Eu³⁺ ions show the well-known van Vleck paramagnetism [43].

3.2.2. Magnetic properties of Gd₃MoO₇

Fig. 5 shows the temperature dependence of the magnetic susceptibility for Gd_3MoO_7 in the low temperature region. An antiferromagnetic transition has been observed at 1.9 K. There is no divergence between the ZFC and FC susceptibilities. The inset of Fig. 5 shows the reciprocal susceptibility versus temperature curve and the Curie–Weiss fitting in the temperature range of 10–400 K. The effective magnetic moment of Gd_3MoO_7 is determined to be 14.06 (2) μ_B . From this value, the magnetic moment

а

20

of each Gd³⁺ ion is calculated to be 8.12 (1) μ_B , which is a little larger than the moment of free Gd³⁺ ion (7.94 μ_B), indicating the magnetic contribution of Mo⁵⁺ ion.

In order to obtain the information on the low-temperature magnetic behavior, specific heat measurements were performed down to 0.4 K. Fig. 6 (a) shows the temperature dependence of the specific heat divided by temperature (C_p/T) for Gd₃MoO₇. A clear λ -type specific heat anomaly has been observed at 1.9 K, which corresponds to the results by magnetic susceptibility measurements. To evaluate the magnetic contribution to the specific heat (C_{mag}) , we have to subtract the contribution of lattice specific heat (C_{lat}) from the total specific heat $(C_{\text{mag}}=C_p-C_{\text{lat}})$. The lattice specific heat was estimated by using the data for La₃MoO₇ (the solid line of Fig. 6(a)). From the temperature dependence of the magnetic specific heat, the magnetic entropy change for Gd₃MoO₇ (S_{mag}) is calculated by the relation $S_{\text{mag}} = \int (C_{\text{mag}}/T) dT$. Temperature dependences of the magnetic specific heat divided by temperature (C_{mag}/T) and the magnetic entropy change (S_{mag}) for Gd_3MoO_7 are shown in Fig. 6(b). The total magnetic entropy change is \sim 34 J/mol K, and this value is a little smaller than the value of 3*R*ln 8=51.9 J/mol K (*R*: gas constant). One reason for this is that we do not include the magnetic specific heat below 0.4 K in the estimation of the magnetic entropy change. Anyway, the results indicate that all the Gd³⁺ ions contribute to the antiferromagnetic transition and that the ground state of the Gd³⁺ ions is still eight-degenerate (⁸S_{7/2}) without crystal field splitting.

3.2.3. Low-temperature magnetic properties of Sm₃MoO₇

Measurements of the specific heat down to 0.4 K for Sm₃MoO₇ and the analysis of the magnetic specific heat indicate a "two-step" antiferromagnetic transition due to the ordering of Mo magnetic moments in different crystallographic sites.

Fig. 7 shows the temperature dependence of the magnetic susceptibility for Sm₃MoO₇ in the low temperature region. Small magnetic anomaly has been observed at 2.5 K, but the susceptibility increases with decreasing temperature below this temperature. There is no divergence between the ZFC and FC susceptibilities, even below this temperature. Fig. 8(a) shows the temperature dependence of the specific heat (C_p) for Sm₃MoO₇. A λ -type specific heat anomaly has been observed at 2.5 K, which corresponds to the results by magnetic susceptibility measurements. In addition, another λ -type specific heat anomaly has been found at 0.8 K, indicating the existence of another magnetic ordering at this temperature. The magnetic specific heat of Sm₃MoO₇ was estimated by subtracting the contribution of the lattice specific heat from the total specific heat in the same way as is the case for Gd₃MoO₇. The temperature dependences of the magnetic specific heat divided by temperature (C_{mag}/T) and the magnetic entropy change (Smag) for Sm3MoO7 are shown in Fig. 8(b). The magnetic specific heat below 0.4 K was extrapolated by the relation $C_{\text{mag}} \propto T^3$ from the spin-wave model for the antiferromagnet [44] (the dotted line of Fig. 8(b)). The magnetic entropy change associated with the sum of the two magnetic anomalies (at 0.8 and 2.5 K) is determined to be 15.3 J/mol K. The Sm³⁺ ions in the Sm₃MoO₇ occupy two crystallographic sites, the eight-coordinated Sm(1) site and seven-coordinated Sm(2) and Sm(3) sites, with the ratio 1:2. In both sites, the ground multiplet ${}^{4}I_{9/}$ ₂ of the Sm³⁺ ion should be split into five Kramers doublets by the crystal field in the orthorhombic symmetry. At sufficiently low temperatures, only the lowest doublet of each Sm³⁺ ions needs to be considered. The observed value of magnetic entropy is close to $3R\ln 2 = 17.3$ J/mol K, which indicates that the ground doublets for three Sm³⁺ ions cause the antiferromagnetic ordering.

As shown in Fig. 8, it is difficult to divide the magnetic entropy data into two anomalies. However, it is clear that the magnetic

Fig. 8. (a) Temperature dependence of the specific heat (C_p) for Sm₃MoO₇ and (b) temperature dependences of the magnetic specific heat divided by temperature (C_{mag}/T) and the magnetic entropy change (S_{mag}) for Sm₃MoO₇.

entropy change due to the magnetic anomaly at a higher temperature (2.5 K) is larger than that at a lower temperature (0.8 K), and the magnetic entropy seems to show a step-wise increase (Rln 2+2Rln 2) corresponding to two specific heat anomalies at 0.8 and 2.5 K, respectively. This experimental result suggests that the anomalies observed at 0.8 and 2.5 K are due to the antiferromagnetic ordering of Sm³⁺ ions independently in the 8-coordinated Sm(1) and 7-coordinated Sm(2) and Sm(3) sites, respectively. Similar "two-step" antiferromagnetic transitions have been found in Ln_3TaO_7 (Ln=Nd, Tb) [24], Ln_3NbO_7 (Ln=Nd, Tb) [38], and Gd₃SbO₇ [40].

3.2.4. Comparison of the magnetic properties of Ln_3MoO_7 with those of Ln_3MO_7 (M=Nb, Ta, Sb, Re, Os, Ir, Ru)

Table 5 lists the magnetic properties of Ln_3MoO_7 with those of Ln_3MO_7 compounds (M=Nb, Ta, Sb, Re, Os, Ir, Ru). Since the pentavalent Nb, Ta, and Sb ions are diamagnetic, only the trivalent

Sm₃MoO,

La MoO

Table 5
Magnetic properties of <i>Ln</i> ₃ <i>M</i> O ₇ .

Ln	Ln ₃ MoO ₇	Ln ₃ NbO ₇	Ln ₃ TaO7	Ln ₃ SbO ₇	Ln ₃ ReO ₇	Ln ₃ OsO ₇	Ln ₃ IrO ₇	Ln ₃ RuO ₇
La	$T_{\rm N} = 150 {\rm K}$	_	Dia	Dia		$T_{\rm N}=45~{\rm K}$		<i>T</i> _N =18 K
Pr	Anomaly at 8.0 K	Para	Para	Para	Spin-glass like at 10 K	-	Para	<i>T</i> _N =55 K
Nd	$T_{\rm N} = 2.5 {\rm K}$	<i>T</i> _N =0.6, 2.6 К	<i>T</i> _N =2.1, 2.6 K	T _N =2.5, 3.0 К	long-range magnetic order at 9 K	<i>T</i> _C =75 K	<i>T</i> _N =2.6 K	T _N =19 K
Sm	Anomaly at 0.8, 2.5 K	Para	Para	Para	$T_{\rm N} = 1.9 ~{\rm K}$	Weak ferro $T_{\rm C} = 48 \ {\rm K}$	Para	T _N =10.5, 22.5 K
Eu	Para	Para	Para	Para	Anomaly at 12 K	complex behavior at 50 K	Para	<i>T</i> _N =22.5 K
Gd	$T_{\rm N} = 1.9 ~{\rm K}$	Para	Para	$T_{\rm N} = 2.6 {\rm K}$	$T_{\rm N} = 7.0 ~{\rm K}$	Ferro $T_{\rm C}$ =34 K		<i>T</i> _N =9.5, 15 K
Tb		<i>T</i> _N =2.2, 3.9 K	$T_{\rm N} = 2.9, 3.6 \text{ K}$	$T_{\rm N} = 3.0 \rm K$	$T_{\rm N} = 14.0 \rm K$			
Dy		Para	$I_{\rm N}=2.3$ K	$I_{\rm N} = 3.2 \text{ K}$	I _N =2.8 K			
HO		Para	$T_{\rm N} = 2.6 \text{ K}$	$I_{\rm N}=2.2~{\rm K}$	Para			
Er		Para	Para	Para				
Tm		Para	Para	Para				
Yb		Para	Para	Para				
Lu		-	Dia	Dia				

Ln ions contribute to the magnetic properties of Ln_3MO_7 compounds. Their magnetic properties are very similar. For example, any of the *Ln*=Nd compounds shows "two-step" antiferromagnetic transitions at 0.6–3.0 K. All *Ln*=Tb compounds order at 2.2–3.9 K. Other compounds such as Ln = Pr, Sm, Eu, Er, Tm, and Yb are paramagnetic. Although Ir^{5+} ions have $5d^2$ unpaired electrons, magnetic properties of Ln_3IrO_7 compounds are close to those of Ln_3MO_7 (M=Nb, Ta, Sb) compounds, that is, a *Ln*=Nd compound shows an antiferromagnetic ordering at almost the same temperature, 2.6 K, and other Ln_3IrO_7 (Ln=Pr, Sm, Eu) compounds are paramagnetic down to 1.8 K. It seems that Ir⁵⁺ ions do not contribute to the magnetic properties of Ln_3IrO_7 compounds. On the other hand, both Os^{5+} and Ru^{5+} ions have the largest possible spin (S=3/2) and any of the Ln_3MO_7 compounds containing these M^{5+} ions shows a variety of magnetic transitions at relatively high temperatures. Their magnetic properties are due to both Ln^{3+} and M^{5+} ions, and therefore could be modulated as a function of the electronic configuration of the Ln^{3+1} ions. Magnetic properties of Ln₃MoO₇ compounds are not classified into any of the above mentioned two categories, and are unique, as described in this paper.

References

- [1] H.J. Rossell, J. Solid State Chem. 27 (1979) 115-122.
- [2] A. Kahn-Harari, L. Mazerrolles, D. Michel, F. Robert, J. Solid State Chem. 116 (1995) 103-106.
- F.P.F. van Berkel, D.J.W. IJdo, Mater. Res. Bull. 21 (1986) 1103-1106.
- [4] W.A. Groen, F.P.F. van Berkel, D.J.W. IJdo, Acta Crystallogr. C 43 (1986) 2262-2264
- [5] P. Khalifah, R.W. Erwin, J.W. Lynn, Q. Huang, B. Batlogg, R.J. Cava, Phys. Rev. B 60 (1999) 9573-9578.
- [6] P. Khalifah, Q. Huang, J.W. Lynn, R.W. Erwin, R.J. Cava, Mater. Res. Bull. 35 (2000) 1 - 7
- [7] F. Wiss, N.P. Raju, A.S. Wills, J.E. Greedan, Int. J. Inorg. Mater. 2 (2000) 53-59.
- [8] B.P. Bontchev, A.J. Jacobson, M.M. Gospodinov, V. Skumryev, V.N. Popov, B. Lorenz, R.L. Meng, A.P. Litvinchuk, M.N. Iliev, Phys. Rev. B 62 (2000) 12235-12240.

- [9] D. Harada, Y. Hinatsu, J. Solid State Chem. 158 (2001) 245-253.
- [10] D. Harada, Y. Hinatsu, Y. Ishii, J. Phys.: Condens. Matter 13 (2001) 10825-10836.
- [11] D. Harada, Y. Hinatsu, J. Solid State Chem. 164 (2002) 163-168.
- [12] R. Lam, F. Wiss, J.E. Greedan, J. Solid State Chem. 167 (2002) 182-187.
- [13] W.R. Gemmill, M.D. Smith, H.-C. zur Loye, Inorg. Chem. 43 (2004) 4254–4261.
- [14] N. Ishizawa, K. Hiraga, D. du Boulay, H. Hibino, T. Ida, S. Oishi, Acta Crystallogr. E62 (2006) i13-i16. [15] G. Wltschek, H. Paulus, I. Svoboda, H. Ehrenberg, H. Fuess, J.Solid State Chem.
- 125 (1996) 1-4.
- [16] R. Lam, T. Langet, J.E. Greedan, J. Solid State Chem. 171 (2002) 317-323.
- [17] Y. Hinatsu, M. Wakeshima, N. Kawabuchi, N. Taira, J. Alloys Compd. 374 (2004)79-83
- [18] J.R. Plaisier, R.J. Drost, D.J.W. IJdo, J. Solid State Chem. 169 (2002) 189-198. [19] W.R. Gemmill, M.D. Smith, Y.A. Mozharivsky, G.J. Miller, H.-C. zur Loye, Inorg.
- Chem. 44 (2005) 7047-7055.
- [20] J.G. Allpress, H.J. Rossell, J. Solid State Chem. 27 (1979) 105-114.
- Y. Yokogawa, M. Yoshimura, S. Somiya, Mater. Res. Bull. 22 (1987) 1449-1456. [21]
- [22] Y. Yokogawa, M. Yoshimura, S. Somiya, Solid State Ionics 28 (1988) 1250–1253.
- [23] J.F. Vente, R.B. Helmholdt, D.J.W. IJdo, J. Solid State Chem. 108 (1994) 18-23.
- [24] M. Wakeshima, H. Nishimine, Y. Hinatsu, J. Phys.: Condens. Matter 16 (2004)
- 4103-4120
- [25] J.F. Vente, D.J.W. IJdo, Mater. Res. Bull. 26 (1991) 1255-1262.
- [26] H. Nishimine, M. Wakeshima, Y. Hinatsu, J. Solid State Chem. 177 (2004) 739-744.
- [27] H. Prevost-Czeskleba, J. Less-Common Met. 127 (1987) 117-124.
- [28] J.E. Greedan, N.P. Raju, A. Wegner, P. Gougeon, J. Padiou, J. Solid State Chem. 129 (1997) 320-327.
- [29] N. Barrier, P. Gougeon, Acta Crystallogr. E59 (2003) i22-i24.
- [30] H. Nishimine, M. Wakeshima, Y. Hinatsu, J. Solid State Chem. 178 (2005) 1221-1229
- [31] N. Ishizawa, K. Tateishi, S. Kondo, T. Suwa, Acta Crystallogr, 47 (2006) 558–566.
- [32] T. Fennell, S.T. Bramwell, M.A. Green, Can. J. Phys. 79 (2001) 1415-1419.
- [33] N. Barrier, P. Gall, P. Gougeon, Acta Crystallogr. C63 (2007) i102-i104.
- [34] W.R. Gemmill, M.D. Smith, H.-C. zur Loye, J. Chem. Crystallogr 37 (2007) 793-795.
- [35] N. Ishizawa, T. Suwa, K. Tateishi, J.R. Hester, Acta Crystallogr. C63 (2007) i43-i46.
- [36] N. Ishizawa, T. Suwa, K. Tateishi, Acta Crystallogr. E63 (2007) i163.
- [37] N. Ishizawa, K. Tateishi, S. Kondo, T. Suwa, Inorg. Chem. 47 (2008) 558-566. [38] Y. Doi, Y. Harada, Y. Hinatsu, J. Solid State Chem. 182 (2009) 709-715.
- [39] P. Gall, P. Gougeon, J. Solid State Chem. 182 (2009) 1035-1039.
- [40] Y. Hinatsu, H. Ebisawa, Y. Doi, J. Solid State Chem. 182 (2009) 1694-1699.
- [41] L. Cai, S. Denev, V. Gopalan, J. Nino, J. Am. Ceram. Soc. 93 (2010) 875-880.
- [42] F. Izumi, T. Ikeda, Mater. Sci. Forum 198 (2000) 321-324.
- [43] J.H. van Vleck, Theory of Electric and Magnetic Susceptibilities, Oxford, Clarendon, 1932.
- [44] S.J. Joshua, A.P. Cracknell, Phys. Lett. A28 (1969) 562-563.